Copied to
clipboard

G = C528M4(2)  order 400 = 24·52

4th semidirect product of C52 and M4(2) acting via M4(2)/C4=C4

metabelian, supersoluble, monomial

Aliases: C20.4F5, C528M4(2), (C5×C20).4C4, C4.(C52⋊C4), C52(C4.F5), C525C85C2, C10.22(C2×F5), C526C4.23C22, (C4×C5⋊D5).8C2, (C2×C5⋊D5).10C4, C2.4(C2×C52⋊C4), (C5×C10).35(C2×C4), SmallGroup(400,157)

Series: Derived Chief Lower central Upper central

C1C5×C10 — C528M4(2)
C1C5C52C5×C10C526C4C525C8 — C528M4(2)
C52C5×C10 — C528M4(2)
C1C2C4

Generators and relations for C528M4(2)
 G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=a3, dad=a-1, cbc-1=b2, dbd=b-1, dcd=c5 >

Subgroups: 412 in 56 conjugacy classes, 18 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C8, C2×C4, D5, C10, C10, M4(2), Dic5, C20, C20, D10, C52, C5⋊C8, C4×D5, C5⋊D5, C5×C10, C4.F5, C526C4, C5×C20, C2×C5⋊D5, C525C8, C4×C5⋊D5, C528M4(2)
Quotients: C1, C2, C4, C22, C2×C4, M4(2), F5, C2×F5, C4.F5, C52⋊C4, C2×C52⋊C4, C528M4(2)

Smallest permutation representation of C528M4(2)
On 40 points
Generators in S40
(1 37 10 26 17)(2 27 38 18 11)(3 19 28 12 39)(4 13 20 40 29)(5 33 14 30 21)(6 31 34 22 15)(7 23 32 16 35)(8 9 24 36 25)
(1 10 17 37 26)(2 18 27 11 38)(3 28 39 19 12)(4 40 13 29 20)(5 14 21 33 30)(6 22 31 15 34)(7 32 35 23 16)(8 36 9 25 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 6)(4 8)(9 29)(10 26)(11 31)(12 28)(13 25)(14 30)(15 27)(16 32)(17 37)(18 34)(19 39)(20 36)(21 33)(22 38)(23 35)(24 40)

G:=sub<Sym(40)| (1,37,10,26,17)(2,27,38,18,11)(3,19,28,12,39)(4,13,20,40,29)(5,33,14,30,21)(6,31,34,22,15)(7,23,32,16,35)(8,9,24,36,25), (1,10,17,37,26)(2,18,27,11,38)(3,28,39,19,12)(4,40,13,29,20)(5,14,21,33,30)(6,22,31,15,34)(7,32,35,23,16)(8,36,9,25,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32)(17,37)(18,34)(19,39)(20,36)(21,33)(22,38)(23,35)(24,40)>;

G:=Group( (1,37,10,26,17)(2,27,38,18,11)(3,19,28,12,39)(4,13,20,40,29)(5,33,14,30,21)(6,31,34,22,15)(7,23,32,16,35)(8,9,24,36,25), (1,10,17,37,26)(2,18,27,11,38)(3,28,39,19,12)(4,40,13,29,20)(5,14,21,33,30)(6,22,31,15,34)(7,32,35,23,16)(8,36,9,25,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32)(17,37)(18,34)(19,39)(20,36)(21,33)(22,38)(23,35)(24,40) );

G=PermutationGroup([[(1,37,10,26,17),(2,27,38,18,11),(3,19,28,12,39),(4,13,20,40,29),(5,33,14,30,21),(6,31,34,22,15),(7,23,32,16,35),(8,9,24,36,25)], [(1,10,17,37,26),(2,18,27,11,38),(3,28,39,19,12),(4,40,13,29,20),(5,14,21,33,30),(6,22,31,15,34),(7,32,35,23,16),(8,36,9,25,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,6),(4,8),(9,29),(10,26),(11,31),(12,28),(13,25),(14,30),(15,27),(16,32),(17,37),(18,34),(19,39),(20,36),(21,33),(22,38),(23,35),(24,40)]])

34 conjugacy classes

class 1 2A2B4A4B4C5A···5F8A8B8C8D10A···10F20A···20L
order1224445···5888810···1020···20
size1150225254···4505050504···44···4

34 irreducible representations

dim111112444444
type+++++++
imageC1C2C2C4C4M4(2)F5C2×F5C4.F5C52⋊C4C2×C52⋊C4C528M4(2)
kernelC528M4(2)C525C8C4×C5⋊D5C5×C20C2×C5⋊D5C52C20C10C5C4C2C1
# reps121222224448

Matrix representation of C528M4(2) in GL4(𝔽41) generated by

0700
35600
173440
35610
,
40100
53500
614034
393577
,
713340
403567
2633400
1733400
,
6100
63500
3823400
312271
G:=sub<GL(4,GF(41))| [0,35,1,35,7,6,7,6,0,0,34,1,0,0,40,0],[40,5,6,39,1,35,1,35,0,0,40,7,0,0,34,7],[7,40,26,17,1,35,33,33,33,6,40,40,40,7,0,0],[6,6,38,31,1,35,23,22,0,0,40,7,0,0,0,1] >;

C528M4(2) in GAP, Magma, Sage, TeX

C_5^2\rtimes_8M_4(2)
% in TeX

G:=Group("C5^2:8M4(2)");
// GroupNames label

G:=SmallGroup(400,157);
// by ID

G=gap.SmallGroup(400,157);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,55,50,1444,496,5765,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=a^3,d*a*d=a^-1,c*b*c^-1=b^2,d*b*d=b^-1,d*c*d=c^5>;
// generators/relations

׿
×
𝔽